Displaying 141 – 160 of 225

Showing per page

A unified approach to several inequalities involving functions and derivatives

Javier Duoandikoetxea (2001)

Czechoslovak Mathematical Journal

There are many inequalities measuring the deviation of the average of a function over an interval from a linear combination of values of the function and some of its derivatives. A general setting is given from which the desired inequalities are obtained using Hölder’s inequality. Moreover, sharpness of the constants is usually easy to prove by studying the equality cases of Hölder’s inequality. Comparison of averages, extension to weighted integrals and n -dimensional results are also given.

A weighted inequality for the Hardy operator involving suprema

Pavla Hofmanová (2016)

Commentationes Mathematicae Universitatis Carolinae

Let u be a weight on ( 0 , ) . Assume that u is continuous on ( 0 , ) . Let the operator S u be given at measurable non-negative function ϕ on ( 0 , ) by S u ϕ ( t ) = sup 0 < τ t u ( τ ) ϕ ( τ ) . We characterize weights v , w on ( 0 , ) for which there exists a positive constant C such that the inequality 0 [ S u ϕ ( t ) ] q w ( t ) d t 1 q 0 [ ϕ ( t ) ] p v ( t ) d t 1 p holds for every 0 < p , q < . Such inequalities have been used in the study of optimal Sobolev embeddings and boundedness of certain operators on classical Lorenz spaces.

Abstract separation theorems of Rodé type and their applications

Kazimierz Nikodem, Zsolt Páles, Szymon Wąsowicz (1999)

Annales Polonici Mathematici

Sufficient and necessary conditions are presented under which two given functions can be separated by a function Π-affine in Rodé sense (resp. Π-convex, Π-concave). As special cases several old and new separation theorems are obtained.

Currently displaying 141 – 160 of 225