Page 1 Next

Displaying 1 – 20 of 22

Showing per page

Direct and Reverse Gagliardo-Nirenberg Inequalities from Logarithmic Sobolev Inequalities

Matteo Bonforte, Gabriele Grillo (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

We investigate the connection between certain logarithmic Sobolev inequalities and generalizations of Gagliardo-Nirenberg inequalities. A similar connection holds between reverse logarithmic Sobolev inequalities and a new class of reverse Gagliardo-Nirenberg inequalities.

Distribution and rearrangement estimates of the maximal function and interpolation

Irina Asekritova, Natan Krugljak, Lech Maligranda, Lars-Erik Persson (1997)

Studia Mathematica

There are given necessary and sufficient conditions on a measure dμ(x)=w(x)dx under which the key estimates for the distribution and rearrangement of the maximal function due to Riesz, Wiener, Herz and Stein are valid. As a consequence, we obtain the equivalence of the Riesz and Wiener inequalities which seems to be new even for the Lebesgue measure. Our main tools are estimates of the distribution of the averaging function f** and a modified version of the Calderón-Zygmund decomposition. Analogous...

Domination in the families of Frank and Hamacher t-norms

Peter Sarkoci (2005)

Kybernetika

Domination is a relation between general operations defined on a poset. The old open problem is whether domination is transitive on the set of all t-norms. In this paper we contribute partially by inspection of domination in the family of Frank and Hamacher t-norms. We show that between two different t-norms from the same family, the domination occurs iff at least one of the t-norms involved is a maximal or minimal member of the family. The immediate consequence of this observation is the transitivity...

Double exponential integrability, Bessel potentials and embedding theorems

David Edmunds, Petr Gurka, Bohumír Opic (1995)

Studia Mathematica

This paper is a continuation of [5] and provides necessary and sufficient conditions for double exponential integrability of the Bessel potential of functions from suitable (generalized) Lorentz-Zygmund spaces. These results are used to establish embedding theorems for Bessel potential spaces which extend Trudinger's result.

Currently displaying 1 – 20 of 22

Page 1 Next