Displaying 181 – 200 of 338

Showing per page

On overdetermined Hardy inequalities

Alois Kufner, Herbert Leinfelder (1998)

Mathematica Bohemica

Necessary and sufficient condition on the weights will be derived under which a k -th order Hardy inequality holds on classes of functions satisfying more than k “boundary” conditions.

On Ozeki's inequality.

Izumino, Saichi, Mori, Hideo, Seo, Yuki (1998)

Journal of Inequalities and Applications [electronic only]

On Ozeki’s inequality for power sums

Horst Alzer (2000)

Czechoslovak Mathematical Journal

Let p ( 0 , 1 ) be a real number and let n 2 be an even integer. We determine the largest value c n ( p ) such that the inequality i = 1 n | a i | p c n ( p ) holds for all real numbers a 1 , ... , a n which are pairwise distinct and satisfy min i j | a i - a j | = 1 . Our theorem completes results of Ozeki, Mitrinović-Kalajdžić, and Russell, who found the optimal value c n ( p ) in the case p > 0 and n odd, and in the case p 1 and n even.

On pointwise interpolation inequalities for derivatives

Vladimir G. Maz'ya, Tatjana Olegovna Shaposhnikova (1999)

Mathematica Bohemica

Pointwise interpolation inequalities, in particular, ku(x)c(Mu(x)) 1-k/m (Mmu(x))k/m, k<m, and |Izf(x)|c (MIf(x))Re z/Re (Mf(x))1-Re z/Re , 0<Re z<Re<n, where k is the gradient of order k , is the Hardy-Littlewood maximal operator, and I z is the Riesz potential of order z , are proved. Applications to the theory of multipliers in pairs of Sobolev spaces are given. In particular, the maximal algebra in the multiplier space M ( W p m ( n ) W p l ( n ) ) is described.

On refinements of certain inequalities for means

Sándor, József Sándor, József (1995)

Archivum Mathematicum

In this paper we obtain certain refinements (and new proofs) for inequalities involving means, results attributed to Carlson; Leach and Sholander; Alzer; Sndor; and Vamanamurthy and Vuorinen.

Currently displaying 181 – 200 of 338