Hardy's inequalities revisited
We prove some Hardy-type inequalities related to quasilinear second-order degenerate elliptic differential operators . If is a positive weight such that , then the Hardy-type inequalityholds. We find an explicit value of the constant involved, which, in most cases, results optimal. As particular case we derive Hardy inequalities for subelliptic operators on Carnot Groups.
A Hardy-type inequality with singular kernels at zero and on the boundary ∂Ω is proved. Sharpness of the inequality is obtained for Ω= B 1(0).
In this paper we consider a class of Hankel operators with operator valued symbols on the Hardy space where is a separable infinite dimensional Hilbert space and showed that these operators are unitarily equivalent to a class of integral operators in We then obtained a generalization of Hilbert inequality for vector valued functions. In the continuous case the corresponding integral operator has matrix valued kernels and in the discrete case the sum involves inner product of vectors in the...