Previous Page 4

Displaying 61 – 73 of 73

Showing per page

Two inequalities for series and sums

Horst Alzer (1995)

Mathematica Bohemica

In this paper we refine an inequality for infinite series due to Astala, Gehring and Hayman, and sharpen and extend a Holder-type inequality due to Daykin and Eliezer.

Two separation criteria for second order ordinary or partial differential operators

Richard C. Brown, Don B. Hinton (1999)

Mathematica Bohemica

We generalize a well-known separation condition of Everitt and Giertz to a class of weighted symmetric partial differential operators defined on domains in n . Also, for symmetric second-order ordinary differential operators we show that lim sup t c ( p q ' ) ' / q 2 = θ < 2 where c is a singular point guarantees separation of - ( p y ' ) ' + q y on its minimal domain and extend this criterion to the partial differential setting. As a particular example it is shown that - Δ y + q y is separated on its minimal domain if q is superharmonic. For n = 1 the criterion...

Two-parameter Hardy-Littlewood inequality and its variants

Chang-Pao Chen, Dah-Chin Luor (2000)

Studia Mathematica

Let s* denote the maximal function associated with the rectangular partial sums s m n ( x , y ) of a given double function series with coefficients c j k . The following generalized Hardy-Littlewood inequality is investigated: | | s * | | p , μ C p , α , β Σ j = 0 Σ k = 0 ( j ̅ ) p - α - 2 ( k ̅ ) p - β - 2 | c j k | p 1 / p , where ξ̅=max(ξ,1), 0 < p < ∞, and μ is a suitable positive Borel measure. We give sufficient conditions on c j k and μ under which the above Hardy-Littlewood inequality holds. Several variants of this inequality are also examined. As a consequence, the ||·||p,μ-convergence property of s m n ( x , y ) ...

Currently displaying 61 – 73 of 73

Previous Page 4