Displaying 41 – 60 of 73

Showing per page

The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions

Jean Dolbeault, Maria J. Esteban, Gabriella Tarantello (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We first discuss a class of inequalities of Onofri type depending on a parameter, in the two-dimensional Euclidean space. The inequality holds for radial functions if the parameter is larger than - 1 . Without symmetry assumption, it holds if and only if the parameter is in the interval ( - 1 , 0 ] . The inequality gives us some insight on the symmetry breaking phenomenon for the extremal functions of the Caffarelli-Kohn-Nirenberg inequality, in two space dimensions. In fact, for suitable sets of parameters (asymptotically...

The scalar Oseen operator - Δ + / x 1 in 2

Chérif Amrouche, Hamid Bouzit (2008)

Applications of Mathematics

This paper solves the scalar Oseen equation, a linearized form of the Navier-Stokes equation. Because the fundamental solution has anisotropic properties, the problem is set in a Sobolev space with isotropic and anisotropic weights. We establish some existence results and regularities in L p theory.

The trace inequality and eigenvalue estimates for Schrödinger operators

R. Kerman, Eric T. Sawyer (1986)

Annales de l'institut Fourier

Suppose Φ is a nonnegative, locally integrable, radial function on R n , which is nonincreasing in | x | . Set ( T f ) ( x ) = R n Φ ( x - y ) f ( y ) d y when f 0 and x R n . Given 1 < p < and v 0 , we show there exists C > 0 so that R n ( T f ) ( x ) p v ( x ) d x C R n f ( x ) p d x for all f 0 , if and only if C ' > 0 exists with Q T ( x Q v ) ( x ) p ' d x C ' Q v ( x ) d x < for all dyadic cubes Q, where p ' = p / ( p - 1 ) . This result is used to refine recent estimates of C.L. Fefferman and D.H. Phong on the distribution of eigenvalues of Schrödinger operators.

The Young inequality and the Δ₂-condition

Philippe Laurençot (2002)

Colloquium Mathematicae

If φ: [0,∞) → [0,∞) is a convex function with φ(0) = 0 and conjugate function φ*, the inequality x y ε φ ( x ) + C ε φ * ( y ) is shown to hold true for every ε ∈ (0,∞) if and only if φ* satisfies the Δ₂-condition.

Transferring monotonicity in weighted norm inequalities.

Gord Sinnamon (2003)

Collectanea Mathematica

Certain weighted norm inequalities for integral operators with non-negative, monotone kernels are shown to remain valid when the weight is replaced by a monotone majorant or minorant of the original weight. A similar result holds for operators with quasi-concave kernels. To prove these results a careful investigation of the functional properties of the monotone envelopes of a non-negative function is carried-out. Applications are made to function space embeddings of the cones of monotone functions...

Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation

François Bolley, Arnaud Guillin, Florent Malrieu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a Vlasov-Fokker-Planck equation governing the evolution of the density of interacting and diffusive matter in the space of positions and velocities. We use a probabilistic interpretation to obtain convergence towards equilibrium in Wasserstein distance with an explicit exponential rate. We also prove a propagation of chaos property for an associated particle system, and give rates on the approximation of the solution by the particle system. Finally, a transportation inequality...

Trends to equilibrium in total variation distance

Patrick Cattiaux, Arnaud Guillin (2009)

Annales de l'I.H.P. Probabilités et statistiques

This paper presents different approaches, based on functional inequalities, to study the speed of convergence in total variation distance of ergodic diffusion processes with initial law satisfying a given integrability condition. To this end, we give a general upper bound “à la Pinsker” enabling us to study our problem firstly via usual functional inequalities (Poincaré inequality, weak Poincaré,…) and truncation procedure, and secondly through the introduction of new functional inequalities ψ ....

Currently displaying 41 – 60 of 73