Reverse convolution inequalities and applications to inverse heat source problems.
We prove that under the Gaussian measure, half-spaces are uniquely the most noise stable sets. We also prove a quantitative version of uniqueness, showing that a set which is almost optimally noise stable must be close to a half-space. This extends a theorem of Borell, who proved the same result but without uniqueness, and it also answers a question of Ledoux, who asked whether it was possible to prove Borell’s theorem using a direct semigroup argument. Our quantitative uniqueness result has various...
Let denote the space of infinite matrices for which for all with . We characterize the upper triangular positive matrices from , , by using a special kind of Schur multipliers and the G. Bennett factorization technique. Also some related results are stated and discussed.