Displaying 1341 – 1360 of 1525

Showing per page

Subadditive functions and partial converses of Minkowski's and Mulholland's inequalities

J. Matkowski, T. Świątkowski (1993)

Fundamenta Mathematicae

Let ϕ be an arbitrary bijection of + . We prove that if the two-place function ϕ - 1 [ ϕ ( s ) + ϕ ( t ) ] is subadditive in + 2 then ϕ must be a convex homeomorphism of + . This is a partial converse of Mulholland’s inequality. Some new properties of subadditive bijections of + are also given. We apply the above results to obtain several converses of Minkowski’s inequality.

Subelliptic Poincaré inequalities: the case p < 1.

Stephen M. Buckley, Pekka Koskela, Guozhen Lu (1995)

Publicacions Matemàtiques

We obtain (weighted) Poincaré type inequalities for vector fields satisfying the Hörmander condition for p < 1 under some assumptions on the subelliptic gradient of the function. Such inequalities hold on Boman domains associated with the underlying Carnot- Carathéodory metric. In particular, they remain true for solutions to certain classes of subelliptic equations. Our results complement the earlier results in these directions for p ≥ 1.

Superposition of imbeddings and Fefferman's inequality

Miroslav Krbec, Thomas Schott (1999)

Bollettino dell'Unione Matematica Italiana

In questo lavoro si studiano condizioni sufficienti sulla funzione peso V , espresse in termini di integrabilità, per la validità della disuguaglianza B u 2 x V x d x 1 2 c B u x 2 d x 1 2 , dove B denota una sfera in R N . Usando una tecnica di decomposizione di immersioni si dimostrano condizioni sufficienti in termini di appartenenza a spazi di Lebesgue, Lorentz-Orlicz e/o di tipo debole. Come applicazioni vengono fornite condizioni sufficienti per la proprietà forte di prolungamento unico per Δ u V u nelle dimensioni 2 e 3.

Currently displaying 1341 – 1360 of 1525