Displaying 241 – 260 of 537

Showing per page

Iterated quasi-arithmetic mean-type mappings

Paweł Pasteczka (2016)

Colloquium Mathematicae

We work with a fixed N-tuple of quasi-arithmetic means M , . . . , M N generated by an N-tuple of continuous monotone functions f , . . . , f N : I (I an interval) satisfying certain regularity conditions. It is known [initially Gauss, later Gustin, Borwein, Toader, Lehmer, Schoenberg, Foster, Philips et al.] that the iterations of the mapping I N b ( M ( b ) , . . . , M N ( b ) ) tend pointwise to a mapping having values on the diagonal of I N . Each of [all equal] coordinates of the limit is a new mean, called the Gaussian product of the means M , . . . , M N taken on b. We effectively...

La conjecture de Dickson et classes particulières d’entiers

Abdelmadjid Boudaoud (2006)

Annales mathématiques Blaise Pascal

En admettant la conjecture de Dickson, nous démontrons que, pour chaque couple d’entiers q > 0 et k > 0 , il existe une partie infinie L q , k telle que, pour chacun des entiers n L q , k et tout entier s tel que 0 < s q , on ait n + s = s t 1 . . . t k t 1 < . . . < t k sont des nombres premiers. De même, pour chaque couple d’entiers q > 0 et k > 0 , il existe une partie infinie M q , k telle que, pour chacun des entiers n M q , k et tout entier s (nul ou non ) de l’intervalle - q , q , on ait n + s = l t 1 . . . t k t 1 < . . . < t k sont des nombres premiers et l’entier l appartient à l’intervalle 1 , 2 q + 1 . La lecture non standard...

Lemme de Fatou pour l'intégrale de Pettis.

Allal Amrani (1998)

Publicacions Matemàtiques

The purpose of this paper is to present Fatou type results for a sequence of Pettis integrable functions and multifunctions. We prove the non vacuity of the weak upper limit of a sequence of Pettis integrable functions taking their values in a locally convex space and we deduce a Fatou's lemma for a sequence of convex weak compact valued Pettis integrable multifunctions. We prove as well a Lebesgue theorem for a sequence of Pettis integrable multifunctions with values in the space of convex compact...

Linear extensions of relations between vector spaces

Árpád Száz (2003)

Commentationes Mathematicae Universitatis Carolinae

Let X and Y be vector spaces over the same field K . Following the terminology of Richard Arens [Pacific J. Math. 11 (1961), 9–23], a relation F of X into Y is called linear if λ F ( x ) F ( λ x ) and F ( x ) + F ( y ) F ( x + y ) for all λ K { 0 } and x , y X . After improving and supplementing some former results on linear relations, we show that a relation Φ of a linearly independent subset E of X into Y can be extended to a linear relation F of X into Y if and only if there exists a linear subspace Z of Y such that Φ ( e ) Y | Z for all e E . Moreover, if E generates...

Local/global uniform approximation of real-valued continuous functions

Anthony W. Hager (2011)

Commentationes Mathematicae Universitatis Carolinae

For a Tychonoff space X , C ( X ) is the lattice-ordered group ( l -group) of real-valued continuous functions on X , and C * ( X ) is the sub- l -group of bounded functions. A property that X might have is (AP) whenever G is a divisible sub- l -group of C * ( X ) , containing the constant function 1, and separating points from closed sets in X , then any function in C ( X ) can be approximated uniformly over X by functions which are locally in G . The vector lattice version of the Stone-Weierstrass Theorem is more-or-less equivalent...

Łojasiewicz ideals in Denjoy-Carleman classes

Vincent Thilliez (2013)

Studia Mathematica

The classical notion of Łojasiewicz ideals of smooth functions is studied in the context of non-quasianalytic Denjoy-Carleman classes. In the case of principal ideals, we obtain a characterization of Łojasiewicz ideals in terms of properties of a generator. This characterization involves a certain type of estimates that differ from the usual Łojasiewicz inequality. We then show that basic properties of Łojasiewicz ideals in the case have a Denjoy-Carleman counterpart.

Manifold-valued generalized functions in full Colombeau spaces

Michael Kunzinger, Eduard Nigsch (2011)

Commentationes Mathematicae Universitatis Carolinae

We introduce the notion of generalized function taking values in a smooth manifold into the setting of full Colombeau algebras. After deriving a number of characterization results we also introduce a corresponding concept of generalized vector bundle homomorphisms and, based on this, provide a definition of tangent map for such generalized functions.

Currently displaying 241 – 260 of 537