On a problem of Davison.
We define absolutely monotone multifunctions and prove their analyticity on an interval [0,b).
Let be a closed subset of and let denote the metric projection (closest point mapping) of onto in -norm. A classical result of Asplund states that is (Fréchet) differentiable almost everywhere (a.e.) in in the Euclidean case . We consider the case and prove that the th component of is differentiable a.e. if and satisfies Hölder condition of order if .
The aim of this note is to characterize the real coefficients p₁,...,pₙ and q₁,...,qₖ so that be valid whenever the vectors x₁,...,xₙ, y₁,...,yₖ satisfy y₁,...,yₖ ⊆ convx₁,...,xₙ. Using this characterization, a class of generalized weighted quasi-arithmetic means is introduced and several open problems are formulated.
We study geodesic completeness for left-invariant Lorentz metrics on solvable Lie groups.
A continuous multifunction F:[a,b] → clb(Y) is *-concave if and only if the inclusion holds for every s,t ∈ [a,b], s < t.
The problem of linearity of a multivalued derivative and consequently the problem of necessary and sufficient conditions for derivo-periodic multifunctions are investigated. The notion of a derivative of multivalued functions is understood in various ways. Advantages and disadvantages of these approaches are discussed.