Decomposable hulls of multifunctions
Let F be a multifunction with values in Lₚ(Ω, X). In this note, we study which regularity properties of F are preserved when we consider the decomposable hull of F.
Let F be a multifunction with values in Lₚ(Ω, X). In this note, we study which regularity properties of F are preserved when we consider the decomposable hull of F.
The main purpose of this paper is to present a natural method of decomposition into special cubes and to demonstrate how it makes it possible to efficiently achieve many well-known fundamental results from quasianalytic geometry as, for instance, Gabrielov's complement theorem, o-minimality or quasianalytic cell decomposition.
The aim of this paper is to show that every Hausdorff continuous interval-valued function on a completely regular topological space X corresponds to a Dedekind cut in C(X) and conversely.
In this paper we consider the nonlocal (nonstandard) Cauchy problem for differential inclusions in Banach spaces x'(t) ∈ F(t,x(t)), x(0)=g(x), t ∈ [0,T] = I. Investigation over some multivalued integrals allow us to prove the existence of solutions for considered problem. We concentrate on the problems for which the assumptions are expressed in terms of the weak topology in a Banach space. We recall and improve earlier papers of this type. The paper is complemented...
In the paper the entropy of – fuzzy numbers is studied. It is shown that for a given norm function, the computation of the entropy of – fuzzy numbers reduces to using a simple formula which depends only on the spreads and shape functions of incoming numbers. In detail the entropy of –sums and –products of – fuzzy numbers is investigated. It is shown that the resulting entropy can be computed only by means of the entropy of incoming fuzzy numbers or by means of their parameters without the...
In Example 1, we describe a subset X of the plane and a function on X which has a -extension to the whole for each finite, but has no -extension to . In Example 2, we construct a similar example of a subanalytic subset of ; much more sophisticated than the first one. The dimensions given here are smallest possible.