Self-decomposable probability measures on Banach spaces
The basic question of this paper is: If you consider two iterated function systems close to each other in an appropriate topology, are the dimensions of their respective invariant sets close to each other? It is well known that the Hausdorff dimension (and Lebesgue measure) of the invariant set does not depend continuously on the iterated function system. Our main result is that (with a restriction on the "non-conformality" of the transformations) the Hausdorff dimension is a lower semicontinuous...
Suppose that is a measurable space and is a metrizable, Souslin space. Let denote the universal completion of . For , let be the lower semicontinuous hull of . If is -measurable, then is -measurable.
Schmets [22] has developed a measure theory from a generalized notion of a semiring of sets. Goguadze [15] has introduced another generalized notion of semiring of sets and proved that all known properties that semiring have according to the old definitions are preserved. We show that this two notions are almost equivalent. We note that Patriota [20] has defined this quasi-semiring. We propose the formalization of some properties developed by the authors.
This article proposes the formalization of some examples of semiring of sets proposed by Goguadze [8] and Schmets [13].
We present a theory of self-joinings for semisimple maps and their group extensions which is a unification of the following three cases studied so far: (iii) Gaussian-Kronecker automorphisms: [Th], [Ju-Th]. (ii) MSJ and simple automorphisms: [Ru], [Ve], [Ju-Ru]. (iii) Group extension of discrete spectrum automorphisms: [Le-Me], [Le], [Me].
Suppose that and are Banach spaces and that the Banach space is their complete tensor product with respect to some tensor product topology . A uniformly bounded -valued function need not be integrable in with respect to a -valued measure, unless, say, and are Hilbert spaces and is the Hilbert space tensor product topology, in which case Grothendieck’s theorem may be applied. In this paper, we take an index and suppose that and are -spaces with the associated -tensor product...
With an additive function φ from a Boolean ring A into a normed space two positive functions on A, called semivariations of φ, are associated. We characterize those functions as submeasures with some additional properties in the general case as well as in the cases where φ is bounded or exhaustive.
Following H. Sato - Y. Okazaky we will prove that: if is a topological vector space, locally convex and reflexive, and is a gaussian measure on , then is separable.
It is well known that the open set condition and the positivity of the t-dimensional Hausdorff measure are equivalent on self-similar sets, where t is the zero of the topological pressure. We prove an analogous result for a class of Moran constructions and we study different kinds of Moran constructions in this respect.