On one generalization of the weakly compactly generated B-spaces
Steinhaus [9] prove that if a set has a positive Lebesgue measure in the line then its distance set contains an interval. He obtained even stronger forms of this result in [9], which are concerned with mutual distances between points in an infinite sequence of sets. Similar theorems in the case we replace distance by mutual ratio were established by Bose-Majumdar [1]. In the present paper, we endeavour to obtain some results related to sets with Baire property in locally compact topological spaces,...
Let T 1 and T 2 be topologies defined on the same set X and let us say that (X, T 1) and (X, T 2) are similar if the families of sets which have nonempty interior with respect to T 1 and T 2 coincide. The aim of the paper is to study how similar topologies are related with each other.
We present a negative answer to problem 3.7(b) posed on page 193 of [2], where, in fact, A. Rosłanowski asked: Does every set of Lebesgue measure zero belong to some Mycielski ideal?
Let (X,d,μ) be a space of homogeneous type. We study the relationship between two types of s-sets: relative to a distance and relative to a measure. We find a condition on a closed subset F of X under which F is an s-set relative to the measure μ if and only if F is an s-set relative to δ. Here δ denotes the quasi-distance defined by Macías and Segovia such that (X,δ,μ) is a normal space. In order to prove this result, we prove a covering type lemma and a type of Hausdorff measure based criterion...
The collection of all sets of measure zero for a finitely additive, group-valued measure is studied and characterised from a combinatorial viewpoint.