Page 1 Next

Displaying 1 – 20 of 28

Showing per page

A characterization of gradient Young-concentration measures generated by solutions of Dirichlet-type problems with large sources

Gisella Croce, Catherine Lacour, Gérard Michaille (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We show how to capture the gradient concentration of the solutions of Dirichlet-type problems subjected to large sources of order 1 ε concentrated on an ε -neighborhood of a hypersurface of the domain. To this end we define the gradient Young-concentration measures generated by sequences of finite energy and establish a very simple characterization of these measures.

A characterization of gradient Young-concentration measures generated by solutions of Dirichlet-type problems with large sources

Gisella Croce, Catherine Lacour, Gérard Michaille (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We show how to capture the gradient concentration of the solutions of Dirichlet-type problems subjected to large sources of order 1 ε concentrated on an ε-neighborhood of a hypersurface of the domain. To this end we define the gradient Young-concentration measures generated by sequences of finite energy and establish a very simple characterization of these measures.

A Dieudonné theorem for lattice group-valued measures

Giuseppina Barbieri (2019)

Kybernetika

A version of Dieudonné theorem is proved for lattice group-valued modular measures on lattice ordered effect algebras. In this way we generalize some results proved in the real-valued case.

A geometry on the space of probabilities (I). The finite dimensional case.

Henryk Gzyl, Lázaro Recht (2006)

Revista Matemática Iberoamericana

In this note we provide a natural way of defining exponential coordinates on the class of probabilities on the set Ω = [1,n] or on P = {p = (p1, ..., pn) ∈ Rn| pi > 0; Σi=1n pi = 1}. For that we have to regard P as a projective space and the exponential coordinates will be related to geodesic flows in Cn.

A geometry on the space of probabilities (II). Projective spaces and exponential families.

Henryk Gzyl, Lázaro Recht (2006)

Revista Matemática Iberoamericana

In this note we continue a theme taken up in part I, see [Gzyl and Recht: The geometry on the class of probabilities (I). The finite dimensional case. Rev. Mat. Iberoamericana 22 (2006), 545-558], namely to provide a geometric interpretation of exponential families as end points of geodesics of a non-metric connection in a function space. For that we characterize the space of probability densities as a projective space in the class of strictly positive functions, and these will be regarded as a...

A Riesz representation theory for completely regular Hausdorff spaces and its applications

Marian Nowak (2016)

Open Mathematics

Let X be a completely regular Hausdorff space, E and F be Banach spaces. Let Cb(X, E) be the space of all E-valued bounded, continuous functions on X, equipped with the strict topology β. We develop the Riemman-Stieltjes-type Integral representation theory of (β, || · ||F) -continuous operators T : Cb(X, E) → F with respect to the representing Borel operator measures. For X being a k-space, we characterize strongly bounded (β, || · ||F)-continuous operators T : Cb(X, E) → F. As an application, we...

A Young measures approach to quasistatic evolution for a class of material models with nonconvex elastic energies

Alice Fiaschi (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Rate-independent evolution for material models with nonconvex elastic energies is studied without any spatial regularization of the inner variable; due to lack of convexity, the model is developed in the framework of Young measures. An existence result for the quasistatic evolution is obtained in terms of compatible systems of Young measures. We also show as this result can be equivalently reformulated with probabilistic language and leads to the description of the quasistatic evolution in terms...

A Young measures approach to quasistatic evolution for a class of material models with nonconvex elastic energies

Alice Fiaschi (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Rate-independent evolution for material models with nonconvex elastic energies is studied without any spatial regularization of the inner variable; due to lack of convexity, the model is developed in the framework of Young measures. An existence result for the quasistatic evolution is obtained in terms of compatible systems of Young measures. We also show as this result can be equivalently reformulated with probabilistic language and leads to the description of the quasistatic evolution in terms...

An extension theorem for modular measures on effect algebras

Giuseppina Barbieri (2009)

Czechoslovak Mathematical Journal

We prove an extension theorem for modular measures on lattice ordered effect algebras. This is used to obtain a representation of these measures by the classical ones. With the aid of this theorem we transfer control theorems, Vitali-Hahn-Saks, Nikodým theorems and range theorems to this setting.

Currently displaying 1 – 20 of 28

Page 1 Next