Das Hausdorff-Maß von Cantormengen.
We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the...
We propose a framework to define dimensions of Borel measures in a metric space by formulating a set of natural properties for a measure-dimension mapping, namely monotonicity, bi-Lipschitz invariance, (σ-)stability, etc. We study the behaviour of most popular definitions of measure dimensions in regard to our list, with special attention to the standard correlation dimensions and their modified versions.
Various tools can be used to calculate or estimate the dimension of measures. Using a probabilistic interpretation, we propose very simple proofs for the main inequalities related to this notion. We also discuss the case of quasi-Bernoulli measures and point out the deep link existing between the calculation of the dimension of auxiliary measures and the multifractal analysis.
For a probability vector (p₀,p₁) there exists a corresponding self-similar Borel probability measure μ supported on the Cantor set C (with the strong separation property) in ℝ generated by a contractive similitude , i = 0,1. Let S denote the set of points of C at which the probability distribution function F(x) of μ has no derivative, finite or infinite. The Hausdorff and packing dimensions of S have been found by several authors for the case that , i = 0,1. However, when p₀ < a₀ (or equivalently...
Given a self-similar set E generated by a finite system Ψ of contracting similitudes of a complete metric space X we analyze a separation condition for Ψ, which is obtained if, in the open set condition, the open subset of X is replaced with an open set in the topology of E as a metric subspace of X. We prove that such a condition, which we call the restricted open set condition, is equivalent to the strong open set condition. Using the dynamical properties of the forward shift, we find a canonical...