On dimensions of semimetrized measure spaces
We study the Hausdorff dimension of measures whose weight distribution satisfies a Markov non-homogeneous property. We prove, in particular, that the Hausdorff dimensions of this kind of measures coincide with their lower Rényi dimensions (entropy). Moreover, we show that the packing dimensions equal the upper Rényi dimensions. As an application we get a continuity property of the Hausdorff dimension of the measures, when viewed as a function of the distributed weights under the norm.
We investigate an algebraic notion of decidability which allows a uniform investigation of a large class of notions of forcing. Among other things, we show how to build σ-fields of sets connected with Laver and Miller notions of forcing and we show that these σ-fields are closed under the Suslin operation.
Let d be a positive integer and μ a generalized Cantor measure satisfying , where , , with 0 < ρ < 1 and R an orthogonal transformation of . Then ⎧1 < p ≤ 2 ⇒ ⎨, , ⎩ p = 2 ⇒ infr≥1 rd(1/α’-1/2) (∫J₀r|μ̂(y)|² dy)1/2 ≥ D₂ρd/α’where , α’ is defined by and the constants D₁ and D₂ depend only on d and p.
The notion of NST domain and the closely related notion of ball condition, both topological in nature and quite useful within the theory of function spaces, are compared with each other (and with the older concept of porosity) and also with other notions of interest, like those of d-set and of interior regular domain, which have a measure-theoretical nature. Also, after extending the idea of NST (not so terrible) to a larger class of sets, the property is studied in the context of anisotropic self-affine...
We prove that in Polish, abelian, non-locally-compact groups the family of Haar null sets of Christensen does not fulfil the countable chain condition, that is, there exists an uncountable family of pairwise disjoint universally measurable sets which are not Haar null. (Dougherty, answering an old question of Christensen, showed earlier that this was the case for some Polish, abelian, non-locally-compact groups.) Thus we obtain the following characterization of locally compact, abelian groups: Let...