Displaying 101 – 120 of 2105

Showing per page

A note on G δ ideals of compact sets

Maya Saran (2009)

Commentationes Mathematicae Universitatis Carolinae

Solecki has shown that a broad natural class of G δ ideals of compact sets can be represented through the ideal of nowhere dense subsets of a closed subset of the hyperspace of compact sets. In this note we show that the closed subset in this representation can be taken to be closed upwards.

A note on intersections of non-Haar null sets

Eva Matoušková, Miroslav Zelený (2003)

Colloquium Mathematicae

We show that in every Polish, abelian, non-locally compact group G there exist non-Haar null sets A and B such that the set {g ∈ G; (g+A) ∩ B is non-Haar null} is empty. This answers a question posed by Christensen.

A note on the Ehrhard inequality

Rafał Latała (1996)

Studia Mathematica

We prove that for λ ∈ [0,1] and A, B two Borel sets in n with A convex, Φ - 1 ( γ n ( λ A + ( 1 - λ ) B ) ) λ Φ - 1 ( γ n ( A ) ) + ( 1 - λ ) Φ - 1 ( γ n ( B ) ) , where γ n is the canonical gaussian measure in n and Φ - 1 is the inverse of the gaussian distribution function.

Currently displaying 101 – 120 of 2105