Poincaré's recurrence theorem for set-valued dynamical systems
Abstract. The existence theorem of an invariant measure and Poincare's Recurrence Theorem are extended to set-valued dynamical systems with closed graph on a compact metric space.
Abstract. The existence theorem of an invariant measure and Poincare's Recurrence Theorem are extended to set-valued dynamical systems with closed graph on a compact metric space.
In 1967, Ross and Stromberg published a theorem about pointwise limits of orbital integrals for the left action of a locally compact group G on (G,ρ), where ρ is the right Haar measure. We study the same kind of problem, but more generally for left actions of G on any measure space (X,μ), which leave the σ-finite measure μ relatively invariant, in the sense that sμ = Δ(s)μ for every s ∈ G, where Δ is the modular function of G. As a consequence, we also obtain a generalization of a theorem of Civin...
For , let be completely regular Hausdorff spaces, quasi-complete locally convex spaces, , the completion of the their injective tensor product, the spaces of all bounded, scalar-valued continuous functions on , and -valued Baire measures on . Under certain...
On établit pour le cône des mesures positives bornées sur , quasi-invariantes sous les translations de et vérifiant :(avec polynôme borné inférieurement) les résultats suivants :– Toute mesure de est intégrale de mesures appartenant aux génératrices extrémales de .– Les génératrices extrémales de sont composées de mesures markoviennes.
Soit un groupe localement compact abélien ou un groupe de Lie et un compact parfait de . Il existe alors un compact de mesure de Haar nulle tel que soit d’intérieur non vide. En particulier si est métrisable, les seuls ensembles analytiques tels que soit de mesure nulle dès que l’est, sont dénombrables.