Moments of Measures on Banach Spaces.
Recently Entov and Polterovich asked if the Grubb measure was the only symplectic topological measure on the torus. Much to our surprise we discovered a whole new class of intrinsic simple topological measures on the torus, many of which were symplectic.
This paper is devoted to the following question. Suppose that a Polish group G has the property that some non-empty open subset U is covered by finitely many two-sided translates of every other non-empty open subset of G. Is then G necessarily locally compact? Polish groups which do not have the above property are called strongly non-locally compact. We characterize strongly non-locally compact Polish subgroups of in terms of group actions, and prove that certain natural classes of non-locally...
We investigate the problem if every compact space K carrying a Radon measure of Maharam type κ can be continuously mapped onto the Tikhonov cube (κ being an uncountable cardinal). We show that for κ ≥ cf(κ) ≥ κ this holds if and only if κ is a precaliber of measure algebras. Assuming that there is a family of null sets in such that every perfect set meets one of them, we construct a compact space showing that the answer to the above problem is “no” for κ = ω. We also give alternative proofs...