Sobre el corazón de una función vectorial.
In this paper we obtain several basic formulas for generalized integral transforms, convolution products, first variations and inverse integral transforms of functionals defined on function space.
In this paper we define jump set and approximate limits for BV functions on Wiener spaces and show that the weak gradient admits a decomposition similar to the finite dimensional case. We also define the SBV class of functions of special bounded variation and give a characterisation of SBV via a chain rule and a closure theorem. We also provide a characterisation of BV functions in terms of the short-time behaviour of the Ornstein-Uhlenbeck semigroup following an approach due to Ledoux.
In this paper we give a brief overview on the state of art of developments of Geometric Measure Theory in infinite-dimensional Banach spaces. The framework is given by an abstract Wiener space, that is a separable Banach space endowed with a centered Gaussian measure. The focus of the paper is on the theory of sets with finite perimeter and on their properties; this choice was motivated by the fact that most of the good properties of functions of bounded variation can be obtained, thanks to coarea...
Nell'ultimo ventennio tutta una serie di lavori è stata rivolta allo studio delle misure su strutture algebriche più generali delle algebre di Boole, come i poset e i reticoli ortomodulari, le effect algebras, le BCK-algebras. La teoria così ottenuta interessa l'analisi funzionale, il calcolo delle probabilità e la topologia, più recentemente la teoria delle decisioni. Si presentano alcuni risultati relativi a misure su strutture algebriche non-standard analizzando, in particolare, gli aspetti topologici...
This work is devoted to generalizing the Lebesgue decomposition and the Radon-Nikodym theorem to Gleason measures. For that purpose we introduce a notion of integral for operators with respect to a Gleason measure. Finally, we give an example showing that the Gleason theorem does not hold in non-separable Hilbert spaces.
Soit un groupe localement compact abélien ou un groupe de Lie et un compact parfait de . Il existe alors un compact de mesure de Haar nulle tel que soit d’intérieur non vide. En particulier si est métrisable, les seuls ensembles analytiques tels que soit de mesure nulle dès que l’est, sont dénombrables.