Displaying 481 – 500 of 636

Showing per page

Some Fine Properties of BV Functions on Wiener Spaces

Luigi Ambrosio, Michele Miranda Jr., Diego Pallara (2015)

Analysis and Geometry in Metric Spaces

In this paper we define jump set and approximate limits for BV functions on Wiener spaces and show that the weak gradient admits a decomposition similar to the finite dimensional case. We also define the SBV class of functions of special bounded variation and give a characterisation of SBV via a chain rule and a closure theorem. We also provide a characterisation of BV functions in terms of the short-time behaviour of the Ornstein-Uhlenbeck semigroup following an approach due to Ledoux.

Some fine properties of sets with finite perimeter in Wiener spaces

Michele Miranda Jr. (2014)

Banach Center Publications

In this paper we give a brief overview on the state of art of developments of Geometric Measure Theory in infinite-dimensional Banach spaces. The framework is given by an abstract Wiener space, that is a separable Banach space endowed with a centered Gaussian measure. The focus of the paper is on the theory of sets with finite perimeter and on their properties; this choice was motivated by the fact that most of the good properties of functions of bounded variation can be obtained, thanks to coarea...

Some problems for measures on non-standard algebraic structures

Maria Gabriella Graziano (2000)

Bollettino dell'Unione Matematica Italiana

Nell'ultimo ventennio tutta una serie di lavori è stata rivolta allo studio delle misure su strutture algebriche più generali delle algebre di Boole, come i poset e i reticoli ortomodulari, le effect algebras, le BCK-algebras. La teoria così ottenuta interessa l'analisi funzionale, il calcolo delle probabilità e la topologia, più recentemente la teoria delle decisioni. Si presentano alcuni risultati relativi a misure su strutture algebriche non-standard analizzando, in particolare, gli aspetti topologici...

Some remarks on Gleason measures

P. De Nápoli, M. C. Mariani (2007)

Studia Mathematica

This work is devoted to generalizing the Lebesgue decomposition and the Radon-Nikodym theorem to Gleason measures. For that purpose we introduce a notion of integral for operators with respect to a Gleason measure. Finally, we give an example showing that the Gleason theorem does not hold in non-separable Hilbert spaces.

Sommes vectorielles d'ensembles de mesure nulle

Michel Talagrand (1976)

Annales de l'institut Fourier

Soit G un groupe localement compact abélien ou un groupe de Lie et A un compact parfait de G . Il existe alors un compact B de mesure de Haar nulle tel que A B = { a b ; a A , b B } soit d’intérieur non vide. En particulier si G est métrisable, les seuls ensembles analytiques tels que A B soit de mesure nulle dès que B l’est, sont dénombrables.

Currently displaying 481 – 500 of 636