Displaying 501 – 520 of 636

Showing per page

Stochastic integration of functions with values in a Banach space

J. M. A. M. van Neerven, L. Weis (2005)

Studia Mathematica

Let H be a separable real Hilbert space and let E be a real Banach space. In this paper we construct a stochastic integral for certain operator-valued functions Φ: (0,T) → ℒ(H,E) with respect to a cylindrical Wiener process W H ( t ) t [ 0 , T ] . The construction of the integral is given by a series expansion in terms of the stochastic integrals for certain E-valued functions. As a substitute for the Itô isometry we show that the square expectation of the integral equals the radonifying norm of an operator which is...

Strict topologies as topological algebras

Surjit Singh Khurana (2001)

Czechoslovak Mathematical Journal

Let X be a completely regular Hausdorff space, C b ( X ) the space of all scalar-valued bounded continuous functions on X with strict topologies. We prove that these are locally convex topological algebras with jointly continuous multiplication. Also we find the necessary and sufficient conditions for these algebras to be locally m -convex.

Strong Fubini axioms from measure extension axioms

Piotr Zakrzewski (1992)

Commentationes Mathematicae Universitatis Carolinae

It is shown that measure extension axioms imply various forms of the Fubini theorem for nonmeasurable sets and functions in Radon measure spaces.

Structure of measures on topological spaces.

José L. de María, Baltasar Rodríguez Salinas (1989)

Revista Matemática de la Universidad Complutense de Madrid

The Radon spaces of type (T), i.e., topological spaces for which every finite Borel measure on Omega is T-additive and T-regular are characterized. The class of these spaces is very wide and in particular it contains the Radon spaces. We extend the results of Marczewski an Sikorski to the sygma-metrizable spaces and to the subsets of the Banach spaces endowed with the weak topology. Finally, the completely additive families of measurable subsets related with the works of Hansell, Koumoullis, and...

Sugli insiemi piccoli in un gruppo

Antonio Vitolo, Umberto Zannier (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Un insieme S in un gruppo G si dice piccolo se esistono infiniti traslati di S a due a due disgiunti. In questa nota dimostriamo in modo elementare che, sotto opportune ipotesi, G non può essere l'unione di un numero finito di insiemi piccoli (e una generalizzazione di questo risultato).

Currently displaying 501 – 520 of 636