Powers of positive polynomials and codings of Markov chains onto Bernoulli shifts.
We define a class of -actions, d ≥ 2, called product -actions. For every such action we find a connection between its spectrum and the spectra of automorphisms generating this action. We prove that for any subset A of the positive integers such that 1 ∈ A there exists a weakly mixing -action, d≥2, having A as the set of essential values of its multiplicity function. We also apply this class to construct an ergodic -action with Lebesgue component of multiplicity , where k is an arbitrary positive...
In this paper we prove the following results. First, we show the existence of Wiener-Wintner dynamical system with continuous singular spectrum in the orthocomplement of their respective Kronecker factors. The second result states that if , large enough, is a Wiener-Wintner function then, for all , there exists a set of full measure for which the series converges uniformly with respect to .