Displaying 81 – 100 of 142

Showing per page

On the countable generator theorem

Michael Keane, Jacek Serafin (1998)

Fundamenta Mathematicae

Let T be a finite entropy, aperiodic automorphism of a nonatomic probability space. We give an elementary proof of the existence of a finite entropy, countable generating partition for T.

On the directional entropy of ℤ²-actions generated by cellular automata

M. Courbage, B. Kamiński (2002)

Studia Mathematica

We show that for any cellular automaton (CA) ℤ²-action Φ on the space of all doubly infinite sequences with values in a finite set A, determined by an automaton rule F = F [ l , r ] , l,r ∈ ℤ, l ≤ r, and any Φ-invariant Borel probability measure, the directional entropy h v ( Φ ) , v⃗= (x,y) ∈ ℝ², is bounded above by m a x ( | z l | , | z r | ) l o g A if z l z r 0 and by | z r - z l | in the opposite case, where z l = x + l y , z r = x + r y . We also show that in the class of permutative CA-actions the bounds are attained if the measure considered is uniform Bernoulli.

On the distribution function of the majorant of ergodic means

Lasha Epremidze (1992)

Studia Mathematica

Let T be a measure-preserving ergodic transformation of a measure space (X,,μ) and, for f ∈ L(X), let f * = s u p N 1 / N m = 0 N - 1 f T m . In this paper we mainly investigate the question of whether (i) ʃ a | μ ( f * > t ) - 1 / t ʃ ( f * > t ) f d μ | d t < and whether (ii) ʃ a | μ ( f * > t ) - 1 / t ʃ ( f > t ) f d μ | d t < for some a > 0. It is proved that (i) holds for every f ≥ 0. (ii) holds if f ≥ 0 and f log log (f + 3) ∈ L(X) or if μ(X) = 1 and the random variables f T m are independent. Related inequalities are proved. Some examples and counterexamples are constructed. Several known results are obtained as corollaries.

On the entropy and generators of dynamical systems

Beloslav Riečan (1996)

Applications of Mathematics

Recently D. Dumitrescu ([4], [5]) introduced a new kind of entropy of dynamical systems using fuzzy partitions ([1], [6]) instead of usual partitions (see also [7], [11], [12]). In this article a representation theorem is proved expressing the entropy of the dynamical system by the entropy of a generating partition.

On the ergodic decomposition for a cocycle

Jean-Pierre Conze, Albert Raugi (2009)

Colloquium Mathematicae

Let (X,,μ,τ) be an ergodic dynamical system and φ be a measurable map from X to a locally compact second countable group G with left Haar measure m G . We consider the map τ φ defined on X × G by τ φ : ( x , g ) ( τ x , φ ( x ) g ) and the cocycle ( φ ) n generated by φ. Using a characterization of the ergodic invariant measures for τ φ , we give the form of the ergodic decomposition of μ ( d x ) m G ( d g ) or more generally of the τ φ -invariant measures μ χ ( d x ) χ ( g ) m G ( d g ) , where μ χ ( d x ) is χ∘φ-conformal for an exponential χ on G.

On the generalized Avez method

Antoni Leon Dawidowicz (1992)

Annales Polonici Mathematici

A generalization of the Avez method of construction of an invariant measure is presented.

Currently displaying 81 – 100 of 142