Displaying 101 – 120 of 901

Showing per page

An Alpern tower independent of a given partition

James T. Campbell, Jared T. Collins, Steven Kalikow, Raena King, Randall McCutcheon (2015)

Colloquium Mathematicae

Given a measure-preserving transformation T of a probability space (X,ℬ,μ) and a finite measurable partition ℙ of X, we show how to construct an Alpern tower of any height whose base is independent of the partition ℙ. That is, given N ∈ ℕ, there exists a Rokhlin tower of height N, with base B and error set E, such that B is independent of ℙ, and TE ⊂ B.

An alternative proof of the uniqueness of martingale-coboundary decomposition of strictly stationary processes

Takehiko Morita (2019)

Commentationes Mathematicae Universitatis Carolinae

P. Samek and D. Volný, in the paper ``Uniqueness of a martingale-coboundary decomposition of a stationary processes" (1992), showed the uniqueness of martingale-coboundary decomposition of strictly stationary processes. The original proof is given by reducing the problem to the ergodic case. In this note we give another proof without such reduction.

An analogue of the Variational Principle for group and pseudogroup actions

Andrzej Biś (2013)

Annales de l’institut Fourier

We generalize to the case of finitely generated groups of homeomorphisms the notion of a local measure entropy introduced by Brin and Katok [7] for a single map. We apply the theory of dimensional type characteristics of a dynamical system elaborated by Pesin [25] to obtain a relationship between the topological entropy of a pseudogroup and a group of homeomorphisms of a metric space, defined by Ghys, Langevin and Walczak in [12], and its local measure entropies. We prove an analogue of the Variational...

An anti-classification theorem for ergodic measure preserving transformations

Matthew Foreman, Benjamin Weiss (2004)

Journal of the European Mathematical Society

Despite many notable advances the general problem of classifying ergodic measure preserving transformations (MPT) has remained wide open. We show that the action of the whole group of MPT’s on ergodic actions by conjugation is turbulent in the sense of G. Hjorth. The type of classifications ruled out by this property include countable algebraic objects such as those that occur in the Halmos–von Neumann theorem classifying ergodic MPT’s with pure point spectrum. We treat both the classical case of...

An exponential estimate for convolution powers

Roger Jones (1999)

Studia Mathematica

We establish an exponential estimate for the relationship between the ergodic maximal function and the maximal operator associated with convolution powers of a probability measure.

An integral formula for entropy of doubly stochastic operators

Bartosz Frej, Paulina Frej (2011)

Fundamenta Mathematicae

A new formula for entropy of doubly stochastic operators is presented. It is also checked that this formula fulfills the axioms of the axiomatic definition of operator entropy, introduced in an earlier paper of Downarowicz and Frej. As an application of the formula the 'product rule' is obtained, i.e. it is shown that the entropy of a product is the sum of the entropies of the factors. Finally, the proof of continuity of the new 'static' entropy as a function of the measure is given.

Analytic nonregular cocycles over irrational rotations

Mariusz Lemańczyk (1995)

Commentationes Mathematicae Universitatis Carolinae

Analytic cocycles of type I I I 0 over an irrational rotation are constructed and an example of that type is given, where all corresponding special flows are weakly mixing.

Currently displaying 101 – 120 of 901