Scalar product of Dirichlet series and the distribution of integer points on toric varieties.
The Hardy spaces of Dirichlet series, denoted by (p ≥ 1), have been studied by Hedenmalm et al. (1997) when p = 2 and by Bayart (2002) in the general case. In this paper we study some -generalizations of spaces of Dirichlet series, particularly two families of Bergman spaces, denoted and . Each could appear as a “natural” way to generalize the classical case of the unit disk. We recover classical properties of spaces of analytic functions: boundedness of point evaluation, embeddings between...
Utilisant une fonction entière et les propriétés relatives à son diagramme indicateur et à son diagramme conjugué, on établit une inégalité fondamentale liée au terme général d’un élément -dirichlétien où les sont complexes et où les sont des polynômes tayloriens. Ensuite on établit des propriétés de convergence et on utilise l’inégalité fondamentale pour obtenir certaines propriétés liées au prolongement analytique de la fonction définie par l’élément -dirichlétien dans un ouvert connexe...