On the mean of entire functions defined by Dirichlet series with index (p,q)
Let f(z), , be analytic in the finite disc |z| < R. The growth properties of f(z) are studied using the mean values and the iterated mean values of f(z). A convexity result for the above mean values is obtained and their relative growth is studied using the order and type of f(z).
For entire functions defined by absolutely convergent Dirichlet series, a theorem on their mean values is established which include the results of Kamthan, Juneja and Awasthi.
We study the supremum of some random Dirichlet polynomials , where (εₙ) is a sequence of independent Rademacher random variables, the weights (dₙ) are multiplicative and 0 ≤ σ < 1/2. Particular attention is given to the polynomials , , P⁺(n) being the largest prime divisor of n. We obtain sharp upper and lower bounds for the supremum expectation that extend the optimal estimate of Halász-Queffélec, . The proofs are entirely based on methods of stochastic processes, in particular the metric...