Displaying 121 – 140 of 560

Showing per page

Ergodic Universality Theorems for the Riemann Zeta-Function and other L -Functions

Jörn Steuding (2013)

Journal de Théorie des Nombres de Bordeaux

We prove a new type of universality theorem for the Riemann zeta-function and other L -functions (which are universal in the sense of Voronin’s theorem). In contrast to previous universality theorems for the zeta-function or its various generalizations, here the approximating shifts are taken from the orbit of an ergodic transformation on the real line.

Essential norms of weighted composition operators on the space of Dirichlet series

Pascal Lefèvre (2009)

Studia Mathematica

We estimate the essential norm of a weighted composition operator relative to the class of Dunford-Pettis operators or the class of weakly compact operators, on the space of Dirichlet series. As particular cases, we obtain the precise value of the generalized essential norm of a composition operator and of a multiplication operator.

Excursions of diffusion processes and continued fractions

Alain Comtet, Yves Tourigny (2011)

Annales de l'I.H.P. Probabilités et statistiques

It is well-known that the excursions of a one-dimensional diffusion process can be studied by considering a certain Riccati equation associated with the process. We show that, in many cases of interest, the Riccati equation can be solved in terms of an infinite continued fraction. We examine the probabilistic significance of the expansion. To illustrate our results, we discuss some examples of diffusions in deterministic and in random environments.

Currently displaying 121 – 140 of 560