Displaying 201 – 220 of 353

Showing per page

Supercomplex structures, surface soliton equations, and quasiconformal mappings

Julian Ławrynowicz, Katarzyna Kędzia, Osamu Suzuki (1991)

Annales Polonici Mathematici

Hurwitz pairs and triples are discussed in connection with algebra, complex analysis, and field theory. The following results are obtained: (i) A field operator of Dirac type, which is called a Hurwitz operator, is introduced by use of a Hurwitz pair and its characterization is given (Theorem 1). (ii) A field equation of the elliptic Neveu-Schwarz model of superstring theory is obtained from the Hurwitz pair (⁴,³) (Theorem 2), and its counterpart connected with the Hurwitz triple ( 11 , 11 , 26 ) is mentioned....

The angular distribution of mass by Bergman functions.

Donald E. Marshall, Wayne Smith (1999)

Revista Matemática Iberoamericana

Let D = {z: |z| < 1} be the unit disk in the complex plane and denote by dA two-dimensional Lebesgue measure on D. For ε > 0 we define Σε = {z: |arg z| < ε}. We prove that for every ε > 0 there exists a δ > 0 such that if f is analytic, univalent and area-integrable on D, and f(0) = 0 thenThis problem arose in connection with a characterization by Hamilton, Reich and Strebel of extremal dilatation for quasiconformal homeomorphisms of D.

The harmonic and quasiconformal extension operators

Dariusz Partyka, Ken Sakan, Józef Zając (1999)

Banach Center Publications

Different aspects of the boundary value problem for quasiconformal mappings and Teichmüller spaces are expressed in a unified form by the use of the trace and extension operators. Moreover, some new results on harmonic and quasiconformal extensions are included.

The smallest positive eigenvalue of a quasisymmetric automorphism of the unit circle

Dariusz Partyka (1995)

Banach Center Publications

This paper provides sufficient conditions on a quasisymmetric automorphism γ of the unit circle which guarantee the existence of the smallest positive eigenvalue of γ. They are expressed by means of a regular quasiconformal Teichmüller self-mapping φ of the unit disc Δ. In particular, the norm of the generalized harmonic conjugation operator A γ : is determined by the maximal dilatation of φ. A characterization of all eigenvalues of a quasisymmetric automorphism γ in terms of the smallest positive eigenvalue...

Two problems on doubling measures.

Robert Kaufman, Jang-Mei Wu (1995)

Revista Matemática Iberoamericana

Doubling measures appear in relation to quasiconformal mappings of the unit disk of the complex plane onto itself. Each such map determines a homeomorphism of the unit circle on itself, and the problem arises, which mappings f can occur as boundary mappings?

Currently displaying 201 – 220 of 353