Ein verallgemeinerter transfiniter Durchmesser im Zusammenhang mit einer quasikonformen Normalabbildung
It is well known that certain transformations decrease the capacity of a condenser. We prove equality statements for the condenser capacity inequalities under symmetrization and polarization without connectivity restrictions on the condenser and without regularity assumptions on the boundary of the condenser.
We give a new proof of Beurling’s result related to the equality of the extremal length and the Dirichlet integral of solution of a mixed Dirichlet-Neuman problem. Our approach is influenced by Gehring’s work in space. Also, some generalizations of Gehring’s result are presented.
In Landkof’s monograph [8, p. 213] it is asserted that logarithmic capacity is strongly subadditive, and therefore that it is a Choquet capacity. An example demonstrating that logarithmic capacity is not even subadditive can be found e.gi̇n [6, Example 7.20], see also [3, p. 803]. In this paper we will show this fact with the help of the fine topology in potential theory.
Let a,b ∈ z: 0<|z|<1 and let S(a,b) be the class of all univalent functions f that map the unit disk into {a,bwith f(0)=0. We study the problem of maximizing |f’(0)| among all f ∈ S(a,b). Using the method of extremal metric we show that there exists a unique extremal function which maps onto a simply connnected domain bounded by the union of the closures of the critical trajectories of a certain quadratic differential. If a<0
We use Beurling estimates and Zdunik's theorem to prove that the support of a lamination of the circle corresponding to a connected polynomial Julia set has zero length, unless f is conjugate to a Chebyshev polynomial. Equivalently, except for the Chebyshev case, the biaccessible points in the connected polynomial Julia set have zero harmonic measure.
We show that if a Cantor set E as considered by Garnett in [G2] has positive Hausdorff h-measure for a non-decreasing function h satisfying ∫01 r−3 h(r)2 dr < ∞, then the analytic capacity of E is positive. Our tool will be the Menger three-point curvature and Melnikov’s identity relating it to the Cauchy kernel. We shall also prove some related more general results.