Über eine Vermutung von Hayman.
Localisation des singularités des fonctions analytiques définies par des séries du type exp, où les sont complexes et où les sont des polynômes tayloriens, en utilisant des propriétés obtenues selon deux méthodes originellement dues l’une à B. Lepson pour les séries d’exponentielles à coefficients polynomiaux et dont la suite des exposants est une -suite et l’autre à G. L. Luntz pour les séries de Taylor-Dirichlet. Le résultat fondamental utilise un théorème de A. F. Leont’ev-G. P. Lapin...
Indépendance linéaire de où sont des fonctions holomorphes sur avec non constante pour .
Soit dans tel que . Dans cette note, nous démontrons que si une fonction entière a une croissance assez lente et si pour , alors est un polynôme.
We deal with the problem of uniqueness of meromorphic functions sharing three values, and obtain several results which improve and extend some theorems of M. Ozawa, H. Ueda, H. X. Yi and other authors. We provide examples to show that results are sharp.