Displaying 821 – 840 of 1302

Showing per page

Regular and limit sets for holomorphic correspondences

S. Bullett, C. Penrose (2001)

Fundamenta Mathematicae

Holomorphic correspondences are multivalued maps f = Q ̃ Q ̃ - 1 : Z W between Riemann surfaces Z and W, where Q̃₋ and Q̃₊ are (single-valued) holomorphic maps from another Riemann surface X onto Z and W respectively. When Z = W one can iterate f forwards, backwards or globally (allowing arbitrarily many changes of direction from forwards to backwards and vice versa). Iterated holomorphic correspondences on the Riemann sphere display many of the features of the dynamics of Kleinian groups and rational maps, of which...

Régularité et suprarégularité pour une famille de germes dirichlétiens (par rapport à un support de référence)

Maurice Blambert, Jean Siméon (1969)

Annales de l'institut Fourier

Définitions et propriétés des notions nouvelles de demi-plans, droites et abscisses de régularité et de suprarégularité pour une famille de germes dirichlétiens, par rapport à un support commun de référence. Conditions suffisantes (du type de Landau-Fekete) d’égalité de ces abscisses et expressions algorithmiques de majorants. Relations de dépendance (du type de V. Bernstein) entre les différentes abscisses considérées d’une famille donnée. Extensions de résultats classiques relatifs à la famille...

Removable singularities for weighted Bergman spaces

Anders Björn (2006)

Czechoslovak Mathematical Journal

We develop a theory of removable singularities for the weighted Bergman space 𝒜 μ p ( Ω ) = { f analytic in Ω Ω | f | p d μ < } , where μ is a Radon measure on . The set A is weakly removable for 𝒜 μ p ( Ω A ) if 𝒜 μ p ( Ω A ) Hol ( Ω ) , and strongly removable for 𝒜 μ p ( Ω A ) if 𝒜 μ p ( Ω A ) = 𝒜 μ p ( Ω ) . The general theory developed is in many ways similar to the theory of removable singularities for Hardy H p spaces, B M O and locally Lipschitz spaces of analytic functions, including the existence of counterexamples to many plausible properties, e.g. the union of two compact removable singularities needs not be removable....

Results on the deficiencies of some differential-difference polynomials of meromorphic functions

Xiu-Min Zheng, Hong-Yan Xu (2016)

Open Mathematics

In this paper, we study the relation between the deficiencies concerning a meromorphic function f(z), its derivative f′(z) and differential-difference monomials f(z)mf(z+c)f′(z), f(z+c)nf′(z), f(z)mf(z+c). The main results of this paper are listed as follows: Let f(z) be a meromorphic function of finite order satisfying lim sup r→+∞ T(r, f) T(r,  f ′ ) <+∞, lim sup r + T ( r , f ) T ( r , f ' ) < + , and c be a non-zero complex constant, then δ(∞, f(z)m f(z+c)f′(z))≥δ(∞, f′) and δ(∞,f(z+c)nf′(z))≥ δ(∞, f′). We also investigate the value...

Rigidity of harmonic measure

I. Popovici, Alexander Volberg (1996)

Fundamenta Mathematicae

Let J be the Julia set of a conformal dynamics f. Provided that f is polynomial-like we prove that the harmonic measure on J is mutually absolutely continuous with the measure of maximal entropy if and only if f is conformally equivalent to a polynomial. This is no longer true for generalized polynomial-like maps. But for such dynamics the coincidence of classes of these two measures turns out to be equivalent to the existence of a conformal change of variable which reduces the dynamical system...

Currently displaying 821 – 840 of 1302