Area and Hausdorff dimension of the set of accessible points of the Julia sets of λe^z and λ sin(z)
The survey collects many recent advances on area Nevanlinna type classes and related spaces of analytic functions in the unit disk concerning zero sets and factorization representations of these classes and discusses approaches, used in proofs of these results.
When treating spaces of holomorphic functions with growth conditions, one is led to introduce associated weights. In our main theorem we characterize, in terms of the sequence of associated weights, several properties of weighted (LB)-spaces of holomorphic functions on an open subset which play an important role in the projective description problem. A number of relevant examples are provided, and a “new projective description problem” is posed. The proof of our main result can also serve to characterize...
In this note we present a simple proof of a theorem of Hornblower which characterizes those functions analytic in the open unit disk having asymptotic values at a dense set in the boundary. Our method is based on a kind of ∂-mollification and may be of use in other problems as well.
Given an orientation-preserving homeomorphism of the plane, a rotation number can be associated with each locally attracting fixed point. Assuming that the homeomorphism is dissipative and the rotation number vanishes we prove the existence of a second fixed point. The main tools in the proof are Carath´eodory prime ends and fixed point index. The result is applicable to some concrete problems in the theory of periodic differential equations.