Causality and local analyticity : mathematical study
The conformal mapping ω(z) of a domain D onto the unit disc must satisfy the condition |ω(t)| = 1 on ∂D, the boundary of D. The last condition can be considered as a Dirichlet problem for the domain D. In the present paper this problem is reduced to a system of functional equations when ∂D is a circular polygon with zero angles. The mapping is given in terms of a Poincaré series.
In the beginning of the twentieth century, Plemelj introduced the notion of factorization of matrix functions. The matrix factorization finds applications in many fields such as in the diffraction theory, in the theory of differential equations and in the theory of singular integral operators. However, the explicit formulas for the factors of the factorization are known only in a few classes of matrices. In the present paper we consider a new approach to obtain the factorization of a rational matrix...
A holomorphic family , |z|<1, of injections of a compact set E into the Riemann sphere can be extended to a holomorphic family of homeomorphisms , |z|<1, of the Riemann sphere. (An earlier result of the author.) It is shown below that there exist extensions which, in addition, commute with some holomorphic families of holomorphic endomorphisms of , |z|<1 (under suitable assumptions). The classes of covering maps and maps with the path lifting property are discussed.
We study the long-time behavior of solutions of the initial-boundary value (IBV) problem for the Camassa–Holm (CH) equation on the half-line . The paper continues our study of IBV problems for the CH equation, the key tool of which is the formulation and analysis of associated Riemann–Hilbert factorization problems. We specify the regions in the quarter space-time plane , having qualitatively different asymptotic pictures, and give the main terms of the asymptotics in terms of spectral data...
We discuss the existence and multiplicity of positive solutions for a class of second order quasilinear equations. To obtain our results we will use the Ekeland variational principle and the Mountain Pass Theorem.
In this paper, we shall estimate the growth order of the n-th derivative Cauchy integrals at a point in terms of the distance between the point and the boundary of the domain. By using the estimate, we shall generalize Plemelj-Sokthoski theorem. We also consider the boundary behavior of generalized Cauchy integrals on compact bordered Riemann surfaces.
We consider a certain analog of Cauchy type integral taking values in a three-dimensional harmonic algebra with two-dimensional radical. We establish sufficient conditions for an existence of limiting values of this integral on the curve of integration.
We consider linear difference equations whose coefficients are meromorphic at . We characterize the meromorphic equivalence classes of such equations by means of a system of meromorphic invariants. Using an approach inspired by the work of G. D. Birkhoff we show that this system is free.