Displaying 281 – 300 of 765

Showing per page

On the analytic capacity and curvature of some Cantor sets with non-σ-finite length.

Pertti Mattila (1996)

Publicacions Matemàtiques

We show that if a Cantor set E as considered by Garnett in [G2] has positive Hausdorff h-measure for a non-decreasing function h satisfying ∫01 r−3 h(r)2 dr < ∞, then the analytic capacity of E is positive. Our tool will be the Menger three-point curvature and Melnikov’s identity relating it to the Cauchy kernel. We shall also prove some related more general results.

On the approximation of entire functions over Carathéodory domains

Devendra Kumar, Harvir S. Kasana (1994)

Commentationes Mathematicae Universitatis Carolinae

Let D be a Carathéodory domain. For 1 p , let L p ( D ) be the class of all functions f holomorphic in D such that f D , p = [ 1 A D | f ( z ) | p d x d y ] 1 / p < , where A is the area of D . For f L p ( D ) , set E n p ( f ) = inf t π n f - t D , p ; π n consists of all polynomials of degree at most n . In this paper we study the growth of an entire function in terms of approximation...

On the completeness of the system { t λ n log m n t } in C 0 ( E )

Xiangdong Yang (2012)

Czechoslovak Mathematical Journal

Let E = n = 1 I n be the union of infinitely many disjoint closed intervals where I n = [ a n , b n ] , 0 < a 1 < b 1 < a 2 < b 2 < < b n < , lim n b n = . Let α ( t ) be a nonnegative function and { λ n } n = 1 a sequence of distinct complex numbers. In this paper, a theorem on the completeness of the system { t λ n log m n t } in C 0 ( E ) is obtained where C 0 ( E ) is the weighted Banach space consists of complex functions continuous on E with f ( t ) e - α ( t ) vanishing at infinity.

Currently displaying 281 – 300 of 765