Isoperimetric inequalities in Riemann surfaces of infinite type.
Atsuji proposed some integrals along Brownian paths to study the Nevanlinna characteristic function T(f,r) when f is meromorphic in the unit disk D. We show that his criterios does not apply to the basic case when f is a modular elliptic function. The divergence of similar integrals computed along the geodesic flow is also proved. (A)
We study the bases and frames of reproducing kernels in the model subspaces of the Hardy class in the upper half-plane. The main problem under consideration is the stability of a basis of reproducing kernels under “small” perturbations of the points . We propose an approach to this problem based on the recently obtained estimates of derivatives in the spaces and produce estimates of admissible perturbations generalizing certain results of W.S. Cohn and E. Fricain.