On the Structure of the Automorphism Group of a Compact Klein Surface with N Boundary Components (1 < N < 4).
Dans cet article, nous étudions une famille d’opérateurs auto-adjoints dérivés du laplacien sur une surface de Riemann d’aire finie et ayant au voisinage de l’infini la structure d’un cylindre muni d’une métrique à courbure constante . Après avoir étudié la théorie spectrale de tels opérateurs, nous donnons, comme application, un théorème prévoyant l’absence générique de valeurs propres immergées dans le spectre continu du laplacien de ces surfaces. Nous montrons enfin comment ceci permet de...