The practical determination of the deficiency (Geschlecht) and adjoint ... curves for a Riemann surface
H.F. Baker (1894)
Mathematische Annalen
John Ries (1983)
Journal für die reine und angewandte Mathematik
Chueshev, V.V. (2001)
Sibirskij Matematicheskij Zhurnal
Langmeyer, Navah (1998)
Annales Academiae Scientiarum Fennicae. Mathematica
Kazuo Azukawa (1995)
Banach Center Publications
J. J. Etayo Gordejuela, E. Martínez (2008)
Revista Matemática Iberoamericana
Manuel Stadlbauer (2004)
Fundamenta Mathematicae
For a non-compact hyperbolic surface M of finite area, we study a certain Poincaré section for the geodesic flow. The canonical, non-invertible factor of the first return map to this section is shown to be pointwise dual ergodic with return sequence (aₙ) given by aₙ = π/(4(Area(M) + 2π)) · n/(log n). We use this result to deduce that the section map itself is rationally ergodic, and that the geodesic flow associated to M is ergodic with respect to the Liouville measure. ...
Singerman, David, Syddall, Robert I. (2003)
Beiträge zur Algebra und Geometrie
John Harer (1983)
Inventiones mathematicae
Ranjan, Roy (1984)
International Journal of Mathematics and Mathematical Sciences
Ngaiming Mok (1981)
Mathematische Annalen
Shingo Kawai (1996)
Mathematische Annalen
Elise E. Cawley (1993)
Inventiones mathematicae
Oğuzhan Demirel (2009)
Commentationes Mathematicae Universitatis Carolinae
In [Comput. Math. Appl. 41 (2001), 135--147], A. A. Ungar employs the Möbius gyrovector spaces for the introduction of the hyperbolic trigonometry. This Ungar's work plays a major role in translating some theorems from Euclidean geometry to corresponding theorems in hyperbolic geometry. In this paper we explore the theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry.
Anderson, James W., Canary, Richard D., McCullough, Darryl (2000)
Annals of Mathematics. Second Series
L. Gerritzen (1990)
Journal für die reine und angewandte Mathematik
J.L. Harer (1986)
Inventiones mathematicae
McCarthy, John D., Papadopoulos, Athanase (1998)
Annales Academiae Scientiarum Fennicae. Mathematica
Christophe Bavard (2005)
Bulletin de la Société Mathématique de France
Nous développons une théorie de Voronoï géométrique. En l’appliquant aux familles classiques de réseaux euclidiens (par exemple symplectiques ou orthogonaux), nous obtenons notamment de nouveaux résultats de finitude concernant les configurations de vecteurs minimaux et les réseaux particuliers (par exemple parfaits) de ces familles. Les méthodes géométriques introduites sont également illustrées par l’étude d’objets voisins (formes de Humbert) ou analogues (surfaces de Riemann).
H. Weber, R. Dedekind (1882)
Journal für die reine und angewandte Mathematik