On Dominating Sequences in the Unit Disc.
For any holomorphic function on the unit polydisk we consider its restriction to the diagonal, i.e., the function in the unit disc defined by , and prove that the diagonal map maps the space of the polydisk onto the space of the unit disk.
We shall be concerned in this paper with an optimization problem of the form: J(f) → min(max) subject to f ∈ 𝓕 where 𝓕 is some family of complex functions that are analytic in the unit disc. For this problem, the question about its characteristic properties is considered. The possibilities of applications of the results of general optimization theory to such a problem are also examined.
The point-wise product of a function of bounded mean oscillation with a function of the Hardy space is not locally integrable in general. However, in view of the duality between and , we are able to give a meaning to the product as a Schwartz distribution. Moreover, this distribution can be written as the sum of an integrable function and a distribution in some adapted Hardy-Orlicz space. When dealing with holomorphic functions in the unit disc, the converse is also valid: every holomorphic...
The paper establishes integral representation formulas in arbitrarily wide Banach spaces of functions harmonic in the whole .
We prove some optimal logarithmic estimates in the Hardy space with Hölder regularity, where is the open unit disk or an annular domain of . These estimates extend the results established by S. Chaabane and I. Feki in the Hardy-Sobolev space of the unit disk and those of I. Feki in the case of an annular domain. The proofs are based on a variant of Hardy-Landau-Littlewood inequality for Hölder functions. As an application of these estimates, we study the stability of both the Cauchy problem...