Harmonic measure of some Cantor type sets.
We are interested on families of formal power series in parameterized by (). If every is a polynomial whose degree is bounded by a linear function ( for some and ) then the family is either convergent or the series for all except a pluri-polar set. Generalizations of these results are provided for formal objects associated to germs of diffeomorphism (formal power series, formal meromorphic functions, etc.). We are interested on describing the nature of the set of parameters where...
Let be harmonic spaces of Brelot with countable base of completely determining domains. The elements of a subcone of the cone of positive -superharmonic functions in is shown to have an integral representation with the aid of Radon measures on the extreme elements belonging to a compact base of . The extreme elements are shown to be the product of extreme superharmonic functions on the component spaces and the measure representing each element is shown to be unique. Necessary and sufficient...
A conformal finite element method is investigated for a dual variational formulation of the biharmonic problem with mixed boundary conditions on domains with piecewise smooth curved boundary. Thus in the problem of elastic plate the bending moments are calculated directly. For the construction of finite elements a vector potential is used together with -elements. The convergence of the method is proved and an algorithm described.
We considerably improve our earlier results [Ann. Inst. Fourier, 24-4 (1974] concerning Cauchy-Read’s theorems, convergence of Green lines, and the structure of invariant subspaces for a class of hyperbolic Riemann surfaces.