Displaying 21 – 40 of 91

Showing per page

Exact solutions to some external mixed problems in potential theory

Valery I. Fabrikant (1986)

Aplikace matematiky

A new and elegant procedure is proposed for the solution of mixed potential problems in a half-space with a circular line of division of boundary conditions. The approach is based on a new type of integral operators with special properties. Two general external problems are solved; i) An arbitrary potential is specified at the boundary outside a circle, and its normal derivative is zero inside; ii) An arbitrary normal derivative is given outside the circle, and be potential is zero inside. Several...

Hardy spaces and the Dirichlet problem on Lipschitz domains.

Carlos E. Kenig, Jill Pipher (1987)

Revista Matemática Iberoamericana

Our concern in this paper is to describe a class of Hardy spaces Hp(D) for 1 ≤ p < 2 on a Lipschitz domain D ⊂ Rn when n ≥ 3, and a certain smooth counterpart of Hp(D) on Rn-1, by providing an atomic decomposition and a description of their duals.

La quasi-continuité dans l'étude du problème de Dirichlet. Effilement minimal abstrait et ensembles convexes compacts

Denis Feyel (1979)

Annales de l'institut Fourier

Les problèmes de Dirichlet sur la frontière de Martin, sur la frontière de Choquet d’un simplexe métrisable compact, et sur la frontière de Silov d’un simplexe de Bauer métrisable sont tous susceptibles d’une seule méthode de résolution qui utilise un espace de fonctions dites quasi-continues. Cela contient aussi le théorème des limites fines de Fatou-Naïm qui exprime une quasi-continuité jusqu’à la frontière.

Currently displaying 21 – 40 of 91