On Hardy type inequality with non-isotropic kernels.
This paper shows that some characterizations of the harmonic majorization of the Martin function for domains having smooth boundaries also hold for cones.
The note develops results from [5] where an invariance under the Möbius transform mapping the upper halfplane onto itself of the Weinstein operator on is proved. In this note there is shown that in the cases , no other transforms of this kind exist and for case , all such transforms are described.
We construct bounded domains D not equal to a ball in n ≥ 3 dimensional Euclidean space, Rn, for which ∂D is homeomorphic to a sphere under a quasiconformal mapping of Rn and such that n - 1 dimensional Hausdorff measure equals harmonic measure on ∂D.
The main result of the present paper is : every separately-subharmonic function , which is harmonic in , can be represented locally as a sum two functions, , where is subharmonic and is harmonic in , subharmonic in and harmonic in outside of some nowhere dense set .