Previous Page 2

Displaying 21 – 29 of 29

Showing per page

Potential Theory for Schrödinger operators on finite networks.

Enrique Bendito, Angeles Carmona, Andrés M. Encinas (2005)

Revista Matemática Iberoamericana

We aim here at analyzing the fundamental properties of positive semidefinite Schrödinger operators on networks. We show that such operators correspond to perturbations of the combinatorial Laplacian through 0-order terms that can be totally negative on a proper subset of the network. In addition, we prove that these discrete operators have analogous properties to the ones of elliptic second order operators on Riemannian manifolds, namely the monotonicity, the minimum principle, the variational treatment...

Problèmes relatifs à l'itération de fonctions suggérés par les processus en cascade

Serge Dubuc (1971)

Annales de l'institut Fourier

Dans la première partie du travail, l’auteur étudie les fonctions harmoniques associées à un processus en cascade sans disparition d’individus. Il achève la caractérisation des fonctions harmoniques positives extrémales, entreprise dans deux articles précédents et il détermine le comportement asymptotique de celles-ci. Un certain nombre d’exemples de fonctions harmoniques sont décrits. La deuxième partie du travail porte sur les fonctions harmoniques positives qui sont des fonctionnelles linéaires...

Random walks on co-compact fuchsian groups

Sébastien Gouëzel, Steven P. Lalley (2013)

Annales scientifiques de l'École Normale Supérieure

It is proved that the Green’s function of a symmetric finite range random walk on a co-compact Fuchsian group decays exponentially in distance at the radius of convergence R . It is also shown that Ancona’s inequalities extend to  R , and therefore that the Martin boundary for  R -potentials coincides with the natural geometric boundary S 1 , and that the Martin kernel is uniformly Hölder continuous. Finally, this implies a local limit theorem for the transition probabilities: in the aperiodic case, p n ( x , y ) C x , y R - n n - 3 / 2 .

Random walks on the affine group of local fields and of homogeneous trees

Donald I. Cartwright, Vadim A. Kaimanovich, Wolfgang Woess (1994)

Annales de l'institut Fourier

The affine group of a local field acts on the tree 𝕋 ( 𝔉 ) (the Bruhat-Tits building of GL ( 2 , 𝔉 ) ) with a fixed point in the space of ends 𝕋 ( F ) . More generally, we define the affine group Aff ( 𝔉 ) of any homogeneous tree 𝕋 as the group of all automorphisms of 𝕋 with a common fixed point in 𝕋 , and establish main asymptotic properties of random products in Aff ( 𝔉 ) : (1) law of large numbers and central limit theorem; (2) convergence to 𝕋 and solvability of the Dirichlet problem at infinity; (3) identification of the Poisson boundary...

Separately superharmonic functions in product networks

Victor Anandam (2015)

Annales Polonici Mathematici

Let X×Y be the Cartesian product of two locally finite, connected networks that need not have reversible conductance. If X,Y represent random walks, it is known that if X×Y is recurrent, then X,Y are both recurrent. This fact is proved here by non-probabilistic methods, by using the properties of separately superharmonic functions. For this class of functions on the product network X×Y, the Dirichlet solution, balayage, minimum principle etc. are obtained. A unique integral representation is given...

Une propriété de la compactification de Martin d'un domaine euclidien

Alano Ancona (1979)

Annales de l'institut Fourier

Si B est une boule ouverte contenue dans le domaine euclidien Ω , tout filtre sur B , tendant non tangentiellement vers un point de Ω B , converge vers un point minimal dans le compactifié de Martin de Ω . On donne une application, et une variante dans le cas plan, et on termine par un contre-exemple apportant une solution négative à un problème de R.S. Martin. L’idée générale de l’article est d’établir des variantes des inégalités de Harnack pour déterminer la frontière de Martin du domaine.

Currently displaying 21 – 29 of 29

Previous Page 2