Semi-groupes de Feller invariants sur les espaces hyperboliques
Let X×Y be the Cartesian product of two locally finite, connected networks that need not have reversible conductance. If X,Y represent random walks, it is known that if X×Y is recurrent, then X,Y are both recurrent. This fact is proved here by non-probabilistic methods, by using the properties of separately superharmonic functions. For this class of functions on the product network X×Y, the Dirichlet solution, balayage, minimum principle etc. are obtained. A unique integral representation is given...
On relatively compact domains in metric measure spaces we construct singular functions that play the role of Green functions of the p-Laplacian. We give a characterization of metric spaces that support a global version of such singular function, in terms of capacity estimates at infinity of such metric spaces. In addition, when the measure of the space is locally Q-regular, we study quasiconformal invariance property associated with the existence of global singular functions.
We complete the characterization of singular sets of separately analytic functions. In the case of functions of two variables this was earlier done by J. Saint Raymond and J. Siciak.
On étudie les singularités et l’intégrabilité d’une classe de fonctions plurisousharmoniques sur une variété analytique de dimension . Pour étudier ce problème, nous commençons par contrôler les nombres de Lelong de certains types de fonctions plurisousharmoniques . Ensuite, nous étudions les singularités du transformé strict du courant par un éclatement de au dessus d’un point. Nous répondons ainsi positivement au problème d’intégrabilité locale de , lorsque , et lorsque est une fonction plurisousharmonique...
Let E be a compact set in the complex plane, be the Green function of the unbounded component of with pole at infinity and where the supremum is taken over all polynomials of degree at most n, and . The paper deals with recent results concerning a connection between the smoothness of (existence, continuity, Hölder or Lipschitz continuity) and the growth of the sequence . Some additional conditions are given for special classes of sets.