Displaying 21 – 40 of 67

Showing per page

Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces

Marco Biroli, Umberto Mosco (1995)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We prove local embeddings of Sobolev and Morrey type for Dirichlet forms on spaces of homogeneous type. Our results apply to some general classes of selfadjoint subelliptic operators as well as to Dirichlet operators on certain self-similar fractals, like the Sierpinski gasket. We also define intrinsic BV spaces and perimeters and prove related isoperimetric inequalities.

Solutions positives et mesure harmonique pour des opérateurs paraboliques dans des ouverts «lipschitziens»

Yanick Heurteaux (1991)

Annales de l'institut Fourier

Soit L un opérateur parabolique sur R n + 1 écrit sous forme divergence et à coefficients lipschitziens relativement à une métrique adaptée. Nous cherchons à comparer près de la frontière le comportement relatif des L -solutions positives sur un domaine “lipschitzien”. Dans un premier temps, nous démontrons un principe de Harnack uniforme pour certaines L -solutions positives. Ce principe nous permet alors de démontrer une inégalité de Harnack forte à la frontière pour certains couples de L -solutions positives....

Some applications of the trace condition for pluriharmonic functions in Cn.

Alessandro Perotti (2000)

Publicacions Matemàtiques

In this paper we investigate some applications of the trace condition for pluriharmonic functions on a smooth, bounded domain in Cn. This condition, related to the normal component on ∂D of the ∂-operator, permits us to study the Neumann problem for pluriharmonic functions and the ∂-problem for (0,1)-forms on D with solutions having assigned real part on the boundary.

Some Dirichlet spaces obtained by subordinate reflected diffusions.

Niels Jacob, René L. Schilling (1999)

Revista Matemática Iberoamericana

In this paper we want to show how well-known results from the theory of (regular) elliptic boundary value problems, function spaces and interpolation, subordination in the sense of Bochner and Dirichlet forms can be combined and how one can thus get some new aspects in each of these fields.

Some non-linear function theoretic properties of Riemannian manifolds.

Stefano Pigola, Marco Rigoli, Alberto G. Setti (2006)

Revista Matemática Iberoamericana

We study the appropriate versions of parabolicity stochastic completeness and related Liouville properties for a general class of operators which include the p-Laplace operator, and the non linear singular operators in non-diagonal form considered by J. Serrin and collaborators.

Some properties of α-harmonic measure

Dimitrios Betsakos (2008)

Colloquium Mathematicae

The α-harmonic measure is the hitting distribution of symmetric α-stable processes upon exiting an open set in ℝⁿ (0 < α < 2, n ≥ 2). It can also be defined in the context of Riesz potential theory and the fractional Laplacian. We prove some geometric estimates for α-harmonic measure.

Stability and Continuity of Functions of Least Gradient

H. Hakkarainen, R. Korte, P. Lahti, N. Shanmugalingam (2015)

Analysis and Geometry in Metric Spaces

In this note we prove that on metric measure spaces, functions of least gradient, as well as local minimizers of the area functional (after modification on a set of measure zero) are continuous everywhere outside their jump sets. As a tool, we develop some stability properties of sequences of least gradient functions. We also apply these tools to prove a maximum principle for functions of least gradient that arise as solutions to a Dirichlet problem.

Stability results for Harnack inequalities

Alexander Grigor'yan, Laurent Saloff-Coste (2005)

Annales de l’institut Fourier

We develop new techniques for proving uniform elliptic and parabolic Harnack inequalities on weighted Riemannian manifolds. In particular, we prove the stability of the Harnack inequalities under certain non-uniform changes of the weight. We also prove necessary and sufficient conditions for the Harnack inequalities to hold on complete non-compact manifolds having non-negative Ricci curvature outside a compact set and a finite first Betti number or just having asymptotically...

Currently displaying 21 – 40 of 67