Displaying 201 – 220 of 622

Showing per page

Green functions for killed random walks in the Weyl chamber of Sp(4)

Kilian Raschel (2011)

Annales de l'I.H.P. Probabilités et statistiques

We consider a family of random walks killed at the boundary of the Weyl chamber of the dual of Sp(4), which in addition satisfies the following property: for any n ≥ 3, there is in this family a walk associated with a reflection group of order 2n. Moreover, the case n = 4 corresponds to a process which appears naturally by studying quantum random walks on the dual of Sp(4). For all the processes belonging to this family, we find the exact asymptotic of the Green functions along all infinite paths...

Harmonic functions on the real hyperbolic ball I: Boundary values and atomic decomposition of Hardy spaces

Philippe Jaming (1999)

Colloquium Mathematicae

We study harmonic functions for the Laplace-eltrami operator on the real hyperbolic space n . We obtain necessary and sufficient conditions for these functions and their normal derivatives to have a boundary distribution. In doing so, we consider different behaviors of hyperbolic harmonic functions according to the parity of the dimension of the hyperbolic ball n . We then study the Hardy spaces H p ( n ) , 0

Harmonic measures for symmetric stable processes

Jang-Mei Wu (2002)

Studia Mathematica

Let D be an open set in ℝⁿ (n ≥ 2) and ω(·,D) be the harmonic measure on D c with respect to the symmetric α-stable process (0 < α < 2) killed upon leaving D. We study inequalities on volumes or capacities which imply that a set S on ∂D has zero harmonic measure and others which imply that S has positive harmonic measure. In general, it is the relative sizes of the sets S and D c S that determine whether ω(S,D) is zero or positive.

Harmonic morphisms and non-linear potential theory

Ilpo Laine (1992)

Banach Center Publications

Originally, harmonic morphisms were defined as continuous mappings φ:X → X' between harmonic spaces such that h'∘φ remains harmonic whenever h' is harmonic, see [1], p. 20. In general linear axiomatic potential theory, one has to replace harmonic functions h' by hyperharmonic functions u' in this definition, in order to obtain an interesting class of mappings, see [3], Remark 2.3. The modified definition appears to be equivalent with the original one, provided X' is a Bauer space, i.e., a harmonic...

Harmonic spaces associated with adjoints of linear elliptic operators

Peter Sjögren (1975)

Annales de l'institut Fourier

Let L be an elliptic linear operator in a domain in R n . We imposse only weak regularity conditions on the coefficients. Then the adjoint L * exists in the sense of distributions, and we start by deducing a regularity theorem for distribution solutions of equations of type L * u = given distribution. We then apply to L * R.M. Hervé’s theory of adjoint harmonic spaces. Some other properties of L * are also studied. The results generalize earlier work of the author.

Currently displaying 201 – 220 of 622