Announcements of new results
Dans le cadre de l’axiomatique de M. Brelot, et en utilisant la théorie des fonctions harmoniques adjointes de Madame R.M. Hervé, on caractérise la propriété de quasi-analycité notée : toute fonction harmonique adjointe dans un domaine est nulle dès qu’elle est nulle au voisinage d’un point. On montre que est équivalente à une propriété d’approximation de toute fonction réelle finie continue sur les frontières d’ouverts relativement compacts. Cette approximation est réalisée à l’aide de différences...
Let be a complete metric space equipped with a doubling Borel measure supporting a weak Poincaré inequality. We show that open subsets of can be approximated by regular sets. This has applications in nonlinear potential theory on metric spaces. In particular it makes it possible to define Wiener solutions of the Dirichlet problem for -harmonic functions and to show that they coincide with three other notions of generalized solutions.
Let be a Riemannian manifold without a biharmonic Green function defined on it and a domain in . A necessary and sufficient condition is given for the existence of a biharmonic Green function on .
Let and be two strong biharmonic spaces in the sense of Smyrnelis whose associated harmonic spaces are Brelot spaces. A biharmonic morphism from to is a continuous map from to which preserves the biharmonic structures of and . In the present work we study this notion and characterize in some cases the biharmonic morphisms between and in terms of harmonic morphisms between the harmonic spaces associated with and and the coupling kernels of them.