Opérateurs carré du champ
An operator-valued multi-variable Poisson type integral is studied. In Section 2 we obtain a new equivalent condition for the existence of a so-called regular unitary dilation of an n-tuple T=(T₁,...,Tₙ) of commuting contractions. Our development in Section 2 also contains a new proof of the classical dilation result of S. Brehmer, B. Sz.-Nagy and I. Halperin. In Section 3 we turn to the boundary behavior of this operator-valued Poisson integral. The results obtained in this section improve upon...
We consider the following problem: find on a plurisubharmonic function with a given order function. In particular, we prove that any positive ambiguous function on which is constant outside a polar set is the order function of a plurisubharmonic function.
We study the sequence , which is solution of in an open bounded set of and on , when tends to a measure concentrated on a set of null Orlicz-capacity. We consider the relation between this capacity and the -function , and prove a non-existence result.
We study the sequence un, which is solution of in Ω an open bounded set of RN and un= 0 on ∂Ω, when fn tends to a measure concentrated on a set of null Orlicz-capacity. We consider the relation between this capacity and the N-function Φ, and prove a non-existence result.