Displaying 41 – 60 of 67

Showing per page

On the Martin compactification of a bounded Lipschitz domain in a riemannian manifold

John C. Taylor (1978)

Annales de l'institut Fourier

The Martin compactification of a bounded Lipschitz domain D R n is shown to be D for a large class of uniformly elliptic second order partial differential operators on D .Let X be an open Riemannian manifold and let M X be open relatively compact, connected, with Lipschitz boundary. Then M is the Martin compactification of M associated with the restriction to M of the Laplace-Beltrami operator on X . Consequently an open Riemannian manifold X has at most one compactification which is a compact Riemannian...

On the multivariate transfinite diameter

Thomas Bloom, Jean-Paul Calvi (1999)

Annales Polonici Mathematici

We prove several new results on the multivariate transfinite diameter and its connection with pluripotential theory: a formula for the transfinite diameter of a general product set, a comparison theorem and a new expression involving Robin's functions. We also study the transfinite diameter of the pre-image under certain proper polynomial mappings.

On the relation between elliptic and parabolic Harnack inequalities

Waldemar Hebisch, Laurent Saloff-Coste (2001)

Annales de l’institut Fourier

We show that, if a certain Sobolev inequality holds, then a scale-invariant elliptic Harnack inequality suffices to imply its a priori stronger parabolic counterpart. Neither the relative Sobolev inequality nor the elliptic Harnack inequality alone suffices to imply the parabolic Harnack inequality in question; both are necessary conditions. As an application, we show the equivalence between parabolic Harnack inequality for Δ on M , (i.e., for t + Δ ) and elliptic Harnack inequality for - t 2 + Δ on × M .

On the representation of Dirichlet forms

Lars-Erik Andersson (1975)

Annales de l'institut Fourier

A general representation theorem is obtained for positive quadratic forms, defined on C 00 1 ( Ω ) (the space of continuously differentiable functions with compact support contained in Ω R n ) which are local and on which all normal contractions operate.

On the sense preserving mappings in the Helm topology in the plane

Pyrih, Pavel (1999)

Serdica Mathematical Journal

∗Research supported by the grant No. GAUK 186/96 of Charles University.We introduce the helm topology in the plane. We show that (assuming the helm local injectivity and the Euclidean continuity) each mapping which is oriented at all points of a helm domain U is oriented at U.

On the volume of a pseudo-effective class and semi-positive properties of the Harder-Narasimhan filtration on a compact Hermitian manifold

Zhiwei Wang (2016)

Annales Polonici Mathematici

This paper divides into two parts. Let (X,ω) be a compact Hermitian manifold. Firstly, if the Hermitian metric ω satisfies the assumption that ̅ ω k = 0 for all k, we generalize the volume of the cohomology class in the Kähler setting to the Hermitian setting, and prove that the volume is always finite and the Grauert-Riemenschneider type criterion holds true, which is a partial answer to a conjecture posed by Boucksom. Secondly, we observe that if the anticanonical bundle K X - 1 is nef, then for any ε >...

Currently displaying 41 – 60 of 67