On analytic sets and functions with given isolated singularities.
We give a characterization of the irreducible components of a Weierstrass-type (W-type) analytic (resp. algebraic, Nash) variety in terms of the orbits of a Galois group associated in a natural way to this variety. Since every irreducible variety of pure dimension is (locally) a component of a W-type variety, this description may be applied to any such variety.
An effective formula for the Łojasiewicz exponent for analytic curves in a neighbourhood of 0 ∈ ℂ is given.
The Łojasiewicz exponent of the gradient of a convergent power series h(X,Y) with complex coefficients is the greatest lower bound of the set of λ > 0 such that the inequality holds near for a certain c > 0. In the paper, we give an estimate of the Łojasiewicz exponent of grad h using information from the Newton diagram of h. We obtain the exact value of the exponent for non-degenerate series.
Nous étudions les espaces analytiques rigides de dimension 1, réguliers, de genre fini sur un corps valué complet . Nous montrons qu’un tel espace admet une réduction préstable. Si est maximalement complet, se plonge dans une courbe algébrique (analytifiée). On donne aussi une caractérisation des espaces analytiques qui sont le complémentaire d’une partie compacte dans une courbe algébrique.