Page 1

Displaying 1 – 2 of 2

Showing per page

Noethérianité de certaines algèbres de fonctions analytiques et applications

Abdelhafed Elkhadiri, Mouttaki Hlal (2000)

Annales Polonici Mathematici

Let M n be a real-analytic submanifold and H(M) the algebra of real analytic functions on M. If K ⊂ M is a compact subset we consider S K = f H ( M ) | f ( x ) 0 f o r a l l x K ; S K is a multiplicative subset of H ( M ) . Let S K - 1 H ( M ) be the localization of H(M) with respect to S K . In this paper we prove, first, that S K - 1 H ( M ) is a regular ring (hence noetherian) and use this result in two situations:    1) For each open subset Ω n , we denote by O(Ω) the subalgebra of H(Ω) defined as follows: f ∈ O(Ω) if and only if for all x ∈ Ω, the germ of f at x, f x , is algebraic...

Currently displaying 1 – 2 of 2

Page 1